
Understanding the ELBO in VAEs and β-VAEs

Nikita Baklazhenko, Miguel Conner, David Vallmanya, Dominik Wielath

March 2023

In this project, we sought to understand how VAEs leverage sampling to outperform autoencoders purely
built with neural networks. By plotting the latent space of a vanilla autoencoder and a VAE for the MNIST data
set and comparing images created, we visualize how the VAE changes the distribution of the latent space and
improves image generation. As an extension, we further observe how different weighting of the KL divergence in
the loss function of our model affects our results. We do so by following the architecture of β-VAEs introduced
by Higgins et al. 2017. This implementation allows us to analyze the tension between image recreation and
approximating a tractable distribution in the latent space.

1 Introduction

The Variational Autoencoder was first proposed by Kingma and Welling 2013, and later expanded in Kingma
and Welling 2019. It is an autoencoder that uses Variational Inference methods to perform inference and
generative functions. Specifically, the model takes an input and runs it through a stochastic encoder, drawing
a latent variable from a distribution. Then, this latent variable is run through a decoder to generate an image.
The model is optimized through maximizing the ELBO using stochastic gradient descent. The ELBO is an
objective function that is composed of a KL divergence term (pushing the stochastic encoder to produce a
distribution similar to a N (0, 1)) and a reconstruction loss term (pushing the generated image to look as much
as possible like the original image). Part of the reason the model achieves both a nice image and a nicely
distributed latent space is because it balances both of these terms. The main contribution of Kingma and
Welling 2013 is to propose an estimator that allows us to accurately compute the gradient, which is discussed
in more detail below.

The performance of a VAE was shown to be improved by simply changing how the two terms in the
ELBO are balanced, as was first proposed in Higgins et al. 2017. By controlling the importance of having a
nicely distributed latent space and having generated images that are very accurate, the VAE is better able to
disentangle complex latent variables.

In this paper, we review some of the key derivations that define VAEs as discussed by Kingma and Welling
2013 and Kingma and Welling 2019. Then we visualize some of these differences using the MNIST dataset by
dissecting and building on top of a basic VAE built in Keras (Dobilas 2022). We finally show how β-VAEs affect
the latent space and discuss some of the improvements this model provides.

2 Methods

2.1 Scenario and model assumptions

We consider a dataset X = {x(i)}Ni=1 consisting of N i.i.d. samples from a continuous or discrete variable X.
We also consider that an unobserved continuous random variable z generates the data, defining the following
directed latent-variable model,

p(x, z) = p(x|z)p(z) x ∈ X z ∈ Rk

where we can imagine x being an image of a face (made up of a vector of pixel values), and z being a latent
feature like how happy or sad the person is, or whether the person has blond hair or dark hair.

In this way we can describe the following generative process for the latent state z(i) and its corresponding
observation x(i):

1. z(i) is generated from a prior distribution pθ∗(z)

2. x(i) is generated from a conditional distribution, the posterior pθ∗(x|z)

Where the prior pθ∗(z) and the posterior pθ∗(x|z) are defined by parametric families of distributions pθ(z) and
pθ(x|z) respectively and we can consider them differentiable w.r.t. both θ and z. Additionally we assume that
in our scenario,

1

• The posterior probability pθ∗(x|z) is intractable, we cannot compute it.

• There is a large amount of data, and batch optimization is too expensive to perform. We want to update
the model parameters using smaller mini-batches or individual data points because the whole dataset
cannot fit in memory. For sampling we cannot afford to loop for each data point, therefore traditional
sampling-based methods such as Monte Carlo EM are not suitable.

2.2 The ELBO (Evidence Lower Bound)

In a variational autoencoder the objective is to maximize the evidence lower bound, we can obtain an expression
for the ELBO by developing the following expression for the log-likelihood. For any choice of the approximation
distribution qϕ(z|x(i)) (i.e. the encoder) and variational parameters ϕ, we have:

log pθ(x
(i)) = Eqϕ(z|x(i))

[
log pθ(x

(i))
]

= Eqϕ(z|x(i))

[
log

pθ(x
(i), z)

pθ(z|x(i))

]
= Eqϕ(z|x(i))

[
log

pθ(x
(i), z)

pθ(z|x(i))

qϕ(z|x(i))

qϕ(z|x(i))

]
= Eqϕ(z|x(i))

[
log

pθ(x
(i), z)

qϕ(z|x(i))

]
+ Eqϕ(z|x(i))

[
log

qϕ(z|x(i))

pθ(z|x(i))

]
(1)

where we can identify the ELBO and the Kullback-Leibler (KL) Divergence,

L(θ, ϕ;x(i)) = Eqϕ(z|x(i))

[
log

pθ(x
(i), z)

qϕ(z|x(i))

]

DKL(qϕ(z|x(i))||pθ(z|x(i))) = Eqϕ(z|x(i))

[
log

qϕ(z|x(i))

pθ(z|x(i))

]
By rearranging the three terms we obtain the final expression for the ELBO,

L(θ, ϕ;x(i)) = −DKL(qϕ(z|x(i))||pθ(z)) + Eqϕ(z|x(i))[log pθ(x
(i)|z)] (2)

We want to differentiate and optimize the lower bound L(θ, ϕ;x(i)) with respect both the variational param-
eters of the approximation distribution ϕ and the generative parameters θ. However, the gradient of the lower
bound w.r.t. ϕ presents some issues as the usual Monte Carlo gradient estimator for this type of problem is:

∇ϕEqϕ(z)[f(z)] = Eqϕ(z) [f(z)∇ϕ log qϕ(z)] ≈
1

L

L∑
l=1

f(z(l))∇ϕ log qϕ(z
(l)) z(l) ∼ qϕ(z|x(i))

But this gradient estimator is impractical for our purposes as it exhibits high variance (Blei 2012). To solve
this issue in a VAE setting we can use the reparametrization trick, discussed further below.

From eq.(2) we can make two important observations about the maximization of the ELBO w.r.t. the
parameters θ and ϕ,

• It will approximately maximize the marginal likelihood pθ(x). This means that the generative model will
create more accurate images.

• It will minimize the KL divergence of the approximation qϕ(z|x) from the true posterior pθ(z|x), so qϕ(z|x)
becomes closer to the compared distribution.

2.3 The SG optimization of the ELBO

In a VAE setting we are interested in minimizing the loss of our neural network model by back-propagating
the loss gradients through the encoder and decoder parameters which correspond to our ϕ and θ parameters
respectively. This process is equivalent to maximizing the ELBO, which is the sum of individual-datapoint
ELBO’s for i.i.d. data:

Lθ,ϕ(D) =
∑
x∈D

Lθ,ϕ(x) (3)

By using a simple Monte Carlo estimator of the gradient and obtaining a random sample from qϕ(z|x) we
can compute unbiased gradients of the ELBO w.r.t. the generative model parameters θ,

2

Figure 1: Illustration of the reparameterization trick. By using it we can back-propagate through z and compute
the gradients ∇ϕf . Figure from Kingma and Welling 2019

∇θLθ,ϕ(x) = ∇θEqϕ(z|x) [log pθ(x, z)− log qϕ(z|x)]
= Eqϕ(z|x) [∇θ (log pθ(x, z)− log qϕ(z|x))]
= Eqϕ(z|x) [∇θ log pθ(x, z)]

(4)

The gradient w.r.t. the ϕ parameters of the approximation distribution is problematic as the distribution
itself depends on ϕ, so we cannot apply the same methods as before,

∇ϕLθ,ϕ(x) = ∇ϕEqϕ(z|x) [log pθ(x, z)− log qϕ(z|x)]
̸= Eqϕ(z|x) [∇ϕ log qϕ(z|x) (log pθ(x, z)− log qϕ(z|x))]

(5)

To overcome this issue we use the reparametrization trick.

2.4 The Reparameterization trick

By reparameterizing the node z, we do not sample z from N (µ, σ) but instead we define g(ϕ, x, ϵ) = z = µ+σ∗ϵ,
where now ϵ is drawn from a N (0, 1). In this way we express the expectation as,

Eqϕ(z|x)[f(z)] = Ep(ϵ)[f(z)] (6)

and compute the gradient,
∇ϕEqϕ(z|x)[f(z)] = ∇ϕEp(ϵ)[f(z)]

= Ep(ϵ)[∇ϕf(z)]

= ∇ϕf(z)

(7)

With the reparameterization, we can replace an expectation with respect to qϕ(z|x) with one with respect
to p(ϵ) and the ELBO can be rewritten in the following form,

Lθ,ϕ(x) = Eqϕ(z|x)[log pθ(x, z)− log qϕ(z|x)]
= Ep(ϵ)[log pθ(x, gϕ(ϵ))− log qϕ(gϕ(ϵ)|x)]

(8)

Finally we can build a simple Monte Carlo estimator Lθ,ϕ(x) of the individual-datapoint ELBO where we
use a single noise sample ϵ from p(ϵ),

ϵ ∼ p(ϵ) z = gϕ(x, ϵ) Lθ,ϕ(x) = log pθ(x, z)− log qϕ(z|x) (9)

For every datapoint we will do this series of operations that can be easily implented in TensorFlow models,
and we can differentiate with respect to the parameters θ and ϕ now without issues. With the resulting gradient
∇ϕLθ,ϕ(x) we can optimize the ELBO using minibatch Stochastic Gradient Descent.

3

2.5 Gaussian KL divergence

The KL divergence term can be solved analytically, as is shown in the appendix of Kingma and Welling 2013.
Here, we reproduce the derivation. We define our qϕ(z|x(i)) as a Gaussian, as well as our prior pθ(z) where
J is the dimensionality of z. We note that if we use a different distribution, we would solve these integrals
differently, and so our analytical solution is valid only for Gaussians. The key step that allows us to compute
the integral is to convert our normal distributions to exponentials, thereby allowing us to combine terms and
integrate. Then,

−DKL(qϕ(z)||pθ(z)) =
∫

qθ(z)
(
log p(z)− log qθ(z)

)
dz

=

∫
qθ log p(z) dz−

∫
qθ(z) log qθ(z) dz

=

∫
N (z;µ,σ2) logN (z;0,1) dz−

∫
N (z;µ,σ2) logN (z;µ,σ2) dz

= −J

2
log(2π)− 1

2

J∑
j=1

(µ2
j + σ2

j)−
(
−J

2
log(2π)− 1

2

J∑
j=1

(1 + log σ2
j)
)

=
1

2

J∑
j=1

(1 + log
(
σ2
j

)
− µ2

j − σ2
j)

(10)

In our case, the µ and the σ are simply functions of x and our parameters ϕ. Now, we can finally combine this
with our other approximation to write:

L(θ, ϕ;x(i)) ≃ 1

2

J∑
j=1

(
1 + log

(
(σ

(i)
j)2

)
− (µ

(i)
j)2 − (σ

(i)
j)2

)
+
1

L

L∑
l=1

log pθ(x
(i)|z(i,l)) (11)

where z(i,l) = µ(i) + σ(i) ⊙ ϵ(l) and ϵ(l) ∼ N (0,1). The RHS term comes from an estimator of the marginal
likelihood lower bound of the full dataset based on minibatches. We can now quickly compute the steps in our
stochastic gradient descent, and actually run our algorithm.

2.6 The Auto-encoding Variational Bayes algorithm

Having understood the components of the ELBO and the reparametrization trick we can take a look at the
practical estimator of the lower bound and its derivatives with respect of the parameters ϕ and θ that was
introduced by Kingma and Welling 2013. This algorithm is also very illustrative to understand the process
TensorFlow or other neural network libraries do in order to train their models.

During this process the two components of the ELBO are computed:

• The KL Divergence DKL(qϕ(z|x(i))||pθ(z)) can be integrated analytically for the Gaussian case as done
before, as well as for other distributions.

• The expected reconstruction error Eqϕ(z|x(i))[log pθ(x
(i)|z)] requires estimation by sampling. In our VAE

setting it can be computed as the difference of the squared generated and original values from the VAE’s
outputs and inputs respectively.

2.7 β-VAE

We can see in eq. (2) that our ELBO term balances two terms: the KL divergence and the reconstruction loss.
What if we can change the how these two terms are balanced? To do so, we follow the framework introduced
by Higgins et al. 2017.

4

maxθEpθ(z)[pθ(x|z)]

maxϕ,θEx∼D[Eqϕ(z|x)[logpθ(x|z)]] subject to DKL(qϕ(z|x)||p(z)) < ϵ

Rewritten as a Langragian under the KKT conditions, we get:

F (θ, ϕ, β;x, z) = Eqϕ(z|x)[logpθ(x|z)]− β(DKL(qϕ(z|x)||p(z))− ϵ)

In other words, for a parameter β we can rewrite our ELBO as:

F (θ, ϕ, β;x, z) ≥ L(θ, ϕ;x(i)) = −βDKL(qϕ(z|x(i))||pθ(z)) + Eqϕ(z|x(i))[log pθ(x
(i)|z)] (12)

Intuitively, we imagine that as β increases, our KL divergence term becomes penalized more harshly, meaning
that our algorithm tries harder to make our posterior qϕ(z|x(i)) track a N (0, 1). In the other case, the recon-
struction loss is prioritized. The balance between these two terms using the β parameter is investigated in
Higgins et al. 2017 and shown to outperform a traditional VAE, which is the same as a β−V AE where β = 1.

3 Data

The dataset used for exploration is the widely used Modified National Institute of Standards and Technology
(MNIST) dataset containing 28x28 pixel images of handwritten numbers from “0“ to “9”. The dataset contains
60,000 training images and 10,000 test images.

4 Results and Discussion

4.1 Visualizing the Latent Space

Figure 2: Latent Space - Neural Network

To better understand the latent space and the variational autoen-
coder, we first built a neural network encoding, thereby reducing
the image dimensions from 784 to two and then decoding and
reproducing an image of the original size. Decreasing the di-
mensions to two allows us to plot points on the latent space by
allocating them using one node as a value for the x-axis and the
other as a value for the y-axis. Note that since no sampling is in-
volved, we train the network with the loss function solely defined
by the reconstruction error. Therefore, as soon as the network is
trained, all values in the latent space are entirely determined by a
combination of input values and the weights within the network.
We created figure 2 using the test set of the MNIST data con-
taining 10,000 images and plotting their corresponding values in
the latent space. As we can see, there is some level of clustering
in the sense that similar digit values are located closer to each
other. It is notable that points are not densely distributed but
rather spread out with a high variance. Mainly the latent space
corresponding to values one, five, and seven is very large com-
pared to the other digits, for which the latent values are closer
to the origin. One may assume that this distribution follows
some general pattern. But, it is crucial to note that training the
network again may result in an entirely different distribution of
z, as it also depends on the random initialization of the neural
network’s weights. Using this observation as a baseline, we pro-
duced similar plots for the variational autoencoder. The main

difference is that now, the x and y values of the latent variables are not entirely determined by the neural net-
work’s weights. Instead, it is a combination of weights of the network parameterizing a normal distribution and
a random draw from this distribution using the parameters and leveraging the reparametrization trick. Hence,
even with a fully trained neural network, it is impossible to pinpoint the exact latent value for a given input
in a variational autoencoder. This is the case for all inputs to the autoencoder and is particularly important
in the training phase of our model as it hinders the neural network from overfitting to individual data points.
Even for a fully trained VAE, inputting multiple times the same picture results in slightly different latent space

5

Figure 3: Digits created with a trained Variational Autoencoder using the same input digit (top left) for each
output to compare variation in the outputs induced by the sampling

values and outputs, as shown in figure 3. The digit on the top left is the original input image, while all other
images are encoded and then decoded versions of this same image using a fully trained variational autoencoder.
At first sight, all output images created by the VAE appear to be the same, but if we look closer, we can observe
some variation induced by the sampling in the latent space. This helps to prevent overfitting as to reduce
reconstruction loss, the VAE needs to recreate the input well, not just for one specific value of z but for all
values within the distribution from which we draw z. Note further that the distributions of points with similar
characteristics overlap, creating a smooth distribution of z.

Figure 4: Latent space - Variational Autoencoder. Left: the distribution of test data on the latent space. Right:
the distribution of z given one input image and the according draw from this distribution

To get a better understanding, the raster in the background of the right side of figure 4 shows the density
of the normal distribution parameterized by the neural network part of our encoder for some input. The
black point is a draw from this distribution, giving us two values for z associated with the input. Note that
we get two values for z as we defined our latent space as two-dimensional and drew from a bivariate normal
distribution. Besides including random noise to make the neural network more robust to overfitting and the
latent space smoother, the sampling serves another purpose. It allows us to complement our model’s recreation

6

loss term with the KL divergence. As described in the methodology part, the KL divergence allows penalizing
the distribution of each image if it differs from the prior distribution of z. As distributions are parameterized
by the neural network, including the KL divergence in the loss function, trains the weights so that the encoder
outputs mean and variance terms closer to zero and one (or other parameters, depending on our specification
for the prior distribution of z). On the left side of figure 4 we can observe the entire latent space of the VAE
visualized using the 10,000 test examples again. Comparing this plot to the latent space defined by the neural
network in figure 2, we see that now the points are distributed closer to zero, almost assembling a standard
normal distribution with a minor variance. Having the latent space similarly distributed as the defined prior
(here: standard normal) allows us to sample from an according bivariate distribution and plug the sampled
values as input in the decoder part of our VAE. Two terms aiming at different outcomes jointly in the loss
function create tension. On one side, the VAE has to achieve good recreation of the input images, on the other,
its latent space has to approximate a predefined distribution. We can imagine these parts of the loss function
competing during the training.

4.2 Effects of β in β-VAEs

As previously discussed, the architecture of variational autoencoders offers various possibilities for modification,
including the adjustment of the loss function and the choice of different probability distributions. The efficiency
and results of these modifications depends on the specific data and desired outcomes.

To demonstrate the potential impact of modifying the loss function, we conducted an experiment where we
adjusted the weight of the KL divergence term by multiplying it with an arbitrary beta value. Theoretically,
increasing the beta value places greater emphasis on ensuring that the probability distributions resemble a
chosen reference distribution (e.g., N (0, 1)), while also maximizing the utilization of available space.

Figure 5: VAE’s representations with different β values of 0, 1, and 5 respectively for epoch 1. 1st row: Latent
space: 2 row reconstructed images, 3 row: sampling from latent space.

There are several interesting observations that can be inferred from figure 5. Firstly, the scatter plots of
latent dimension distributions with higher β values appear to look more “normal-like”, exhibiting a rounder
structure and more efficient allocation of space provided. While the reconstructed images for all β values are not
yet entirely clear and no essential differences are observed between them, significant differences can be observed
in the last row of images. In these images, random sampling was performed from the latent spaces defined by
VAE’s, with latent vectors generated from N (0, 1) distributions. For a β value of 0 (no KL term was used), the
images sampled from the latent space had little meaning and bore little resemblance to the images in our data
set. However, images sampled from the latent space with higher β values began to look more like our initial
data set images.

7

As we start to iterate over multiple epoch some other interesting observations can be made.

Figure 6: VAE’s representations with different β values of 0, 1, and 5 respectively for epoch 5.

Figure 7: VAE’s representations with different β values of 0, 1, and 5 respectively for epoch 10

8

Figure 8: VAE’s representations with different β values of 0, 1, and 5 respectively for epoch 20.

With each epoch, for figures 6 to 8 we can observe an increasingly better separation and clustering of
our classes in the scatter plots of latent space. Even for high β values, the distributions no longer resemble
N (0, 1) distributions entirely. Instead, they exhibit a more condensed and round shape while occupying space
more efficiently, resulting in similar class distributions. After epoch 5, the reconstructed images do not change
significantly, and we begin to achieve almost perfect reconstruction for all β values.However, setting the β value
too high can damage the quality of the reconstructed images as the algorithm will focus too much on minimizing
the KL loss and sacrifice the reconstruction term. For the experiment, β values of 200-500 were attempted, but
even after 20 epochs, the quality of reconstructed images was inadequate and significantly worse compared to
VAEs with small β values.

The most noticeable differences between the images using β values of 0 and higher β values are observed
in the images sampled from the latent space. Upon examining the outputs for epoch 20, we can observe that
the images sampled from the latent spaces defined by the VAE with β=0 are almost unrecognizable. They are
difficult to identify and resemble a collection of common features shared between most of the digits, such as
vertical sticks. Images that were sampled from the latent space with positive β values are on the other hand
almost as good as the reconstructed ones. Hence, we can see that now we do have an opportunity to sample
from the latent space and navigate in it way more comfortable.

Figure 9: VAE’s representations with different β values of 1 and 50 and for epoch 1 and 20 respectively. As we
can see, at first distributions look more line N(0,1) with very bad separation between clusters

As we can see from scatter plots on figure 9: once we have high values of β our KL term increases rapidly
and our distributions (even after many iterations) become less distinguishable and almost Normal.

9

Figure 10: VAE’s losses with different β values of 0 and 1 respectively
.

Figure 11: VAE’s losses with different β values of 5 and 50 respectively
.

The line charts demonstrated on figures 10 and 11 illustrate the loss over multiple epochs for β values of 0, 1,
5, and 50. It can be observed that even with very high multiplicative β values, the share of KL loss is relatively
low at the beginning (below 1 percent). After multiple iterations, the reconstruction loss drops significantly,
while the KL loss increases in both absolute and relative terms.

This phenomenon can be explained by the fact that as our model becomes more familiar with the structure
of our variables after each epoch, minimizing the KL term becomes less important. Initially, the KL term was
easier to minimize (if a Normal distribution is drawn for each class, the KL loss will be 0). However, over time,
our model is willing to sacrifice the KL loss by making the distribution less normal-like in order to gain more
from having a lower reconstruction loss.

Figure 12: VAE’s confidence plots with different β values of 0 and 1 respectively

Figure 13: VAE’s confidence plots with different β values of 5 and 50 respectively

10

A given stage neural network with multiple layers was trained on initial data to recognize digits. After 10
epochs, it was able to recognize digits quite well (with an accuracy of over 85 percentage on the testing dataset).
Subsequently, the network was run on the testing dataset and the probability (confidence) of the best guess for
each prediction was saved. These confidences were then averaged for the testing dataset to determine a baseline
guess confidence of 0.71.

The same network was then used to estimate the probability (confidence) of the best guess for each digit
drawn from our N (0, 1) latent spaces at different β values and for images recreated by the VAE. The confidence
of the guess for each sampled number was then averaged and divided by the baseline confidence (average con-
fidence of the best guess).

Confidence of Latent Sampling =
Average confidence of the sample

Baseline
(13)

The figures 12 and 13 show that reconstructed images using β value of 0 are slightly inferior to the original
images, and after sufficient iterations, images sampled from the latent space are nearly indistinguishable from
the reconstructed ones, but however the are still not as good as the original ones.

Increasing the value of β results in better quality images sampled from the latent space, surpassing the
quality of the reconstructed ones. Surprisingly, if we set β to very high values, the sampled images are even
more recognizable by the network than the original ones, although they may not necessarily look better in
appearance or more realistic, but just simply more structured and recognizable by the network.

Hence, from what we seen the main benefit of using KL-divergence term was sampling from the latent space
itself. We do know our distributions look somewhat Normal like and most importantly each class occupies
specific partitions of the latent space with some overlays with other classes.

Figure 14: Sample from Latent spaces with β 0 and 5, from Gaussian distribution: N (1, 0.5)

Figure 14 on the other hand clearly indicate that when we travel around the latent space (by creating vectors
from a normal distribution with mean=1 and standard deviation=0.5) and sample from it, the samples obtained
with β = 0 are mostly nonsensical, while the samples from the space defined by the KL term with β = 5 are
meaningful and have a lot of similarities with each other. This implies that by zooming in on specific regions of
the latent space, we can obtain samples with desired features or extract common features between two classes
by drawing samples from the borders of their distributions where they interact.

To summarize, there is much room for further development of VAEs architecture. Techniques for navigating,
sampling, and understanding the latent space can be improved, and different distributions can be explored and
applied to different tasks. For instance, early attempts were made to create VAEs with uniform distributions
where the mean and a-b boundaries move during the sampling process, yielding interesting insights, especially
regarding the extraction of common features. Additionally, the Laplace distribution was also explored, but it
produced almost the same results as N (0, 1).

11

5 Conclusion

In this project, we gained a deeper understanding of variational autoencoders. In particular, we analyzed the
distribution of the latent space and compared different autoencoders and their performance for image recreation
and generation. As expected, the latent space in a neural network-based autoencoder was distributed in a manner
that did not follow a tractable distribution. With the introduction of the sampling and the KL term in the
loss function, we showed that the variational autoencoder overcomes this issue by using variational inference
to approximate a given prior distribution with the latent space. We showed that the KL term is important
because it allows for image generation by sampling from the latent space. Including a scaler beta to increase
the weight of the KL divergence in the loss function to values larger than one further amplifies the ability to
generate meaningful output. Beta can be treated as a hyperparameter that has to be tuned depending on the
application of the VAE, thereby optimizing its performance. Our results show that this increased quality of
generated output by increasing beta comes at the cost of worse performance in correctly recreating input data.

References

Blei, David M. (2012). “Probabilistic Topic Models”. In: Commun. ACM 55.4, 77–84. issn: 0001-0782. doi:
10.1145/2133806.2133826. url: https://doi.org/10.1145/2133806.2133826.

Kingma, Diederik P and Max Welling (2013). “Auto-Encoding Variational Bayes”. In: doi: 10.48550/ARXIV.
1312.6114. url: https://arxiv.org/abs/1312.6114.

Higgins, Irina et al. (2017). “β-VAE: Learning Basic Visual Concepts with a Constrained Variational Frame-
work”. In.

Kingma, Diederik P. and Max Welling (2019). “An Introduction to Variational Autoencoders”. In: CoRR
abs/1906.02691. arXiv: 1906.02691. url: http://arxiv.org/abs/1906.02691.

Dobilas, Saul (2022). VAE & Variational Autoencoders: How to Employ Neural Networks to Generate New
Images. https://towardsdatascience.com/vae-variational-autoencoders-how-to-employ-neural-
networks-to-generate-new-images-bdeb216ed2c0. [Accessed: March 1, 2023].

12

https://doi.org/10.1145/2133806.2133826
https://doi.org/10.1145/2133806.2133826
https://doi.org/10.48550/ARXIV.1312.6114
https://doi.org/10.48550/ARXIV.1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1906.02691
http://arxiv.org/abs/1906.02691
https://towardsdatascience.com/vae-variational-autoencoders-how-to-employ-neural-networks-to-generate-new-images-bdeb216ed2c0
https://towardsdatascience.com/vae-variational-autoencoders-how-to-employ-neural-networks-to-generate-new-images-bdeb216ed2c0

	Introduction
	Methods
	Scenario and model assumptions
	The ELBO (Evidence Lower Bound)
	The SG optimization of the ELBO
	The Reparameterization trick
	Gaussian KL divergence
	The Auto-encoding Variational Bayes algorithm
	-VAE

	Data
	Results and Discussion
	Visualizing the Latent Space
	Effects of in -VAEs

	Conclusion

