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Abstract

We attempt to build a road quality classifier to detect bad roads using satellite imagery

in the province of Sud-Kivu in the Democratic Republic of the Congo (DRC). We model

our approach on existing literature but make a few deviations. Using 60 cm/pixel resolution

from Google Earth, paired with 100 m IRI road quality data for Liberia, we train a CNN

(EfficientNetV2) that performs with an accuracy of 47% for 5-classes and 80% for 2-classes

(AUC: 0.75). Using maps of road types for Liberia and the DRC, we then establish a

connection between the model trained in Liberia and road quality in the DRC. We find that

our methods seem to work well given the many limitations of the project. We note these

limitations and suspect that more standardized higher-quality imagery would be helpful to

achieve better results.



1. Motivation

Roads are critical pieces of infrastructure that are often taken for granted. In the Demo-

cratic Republic of the Congo (DRC), roads have an outsized importance on the safety and

security of it’s population. In this section, we aim to convey the geographical, political, and

sociological factors that motivate the development of an accurate road quality detector for

the eastern DRC.

Geography and Soil Type

The geographic characteristics of the DRC make road construction and maintenance very

difficult. The DRC is a large country; the second largest country in Africa spanning just

over 2.3 million square km. Its population of about 112 million people is widely dispersed

throughout, often separated by large portions of dense rain forest and criss-crossing rivers.

The equatorial placement and humidity of the tropical climate create conditions for signif-

icant rainfall. Indeed, the rainy season lasts from September to May and often drops over

2000 mm of rain per year in some areas.

Perhaps the most important feature of the geography in terms of road building is the

thick, slippery, clay-like dirt called vertisol, which covers much of the country. Schouten

et al. (2022) explain:

“Vertisols form where sediments wash into the depressions of undulating land-

scapes, where humans typically chart their course to reduce the friction of terrain.

They heavily swell with rain, saturate quickly to give rise to viscous puddles and

glutinous gullies, and shrink into hard, cracked earth when drying. In tropical

conditions, implying humidity for most of the year, roads become, in a very
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literal sense, ‘sticky’ infrastructures, pulling on wheels, feet and shoes (Duffield,

1970).”

Building roads under these conditions is difficult, but maintaining them is even more so.

Traditionally, any long distance movement of migration before the 20th century was limited

to the dry season. Since then, many have struggled to maintain a passable road network.

Figure 1.1: Travel can be quite difficult on DRC roads. (Schouten et al., 2022)

Brief History

Congo gained its independence from Belgium in 1960, but its impressive road network

shrunk by 60% almost immediately. The colonizer’s solution to dealing with the vertisol

was to require all able bodied men to spend a month every year maintaining the roads. Now

a free country however, nobody could be required to do this work, and nobody could pay

for someone to do it either.

For political reasons, the dictator Mobutu, who ruled from 1965 to 1997, was wary

of creating a well-connected road network, though he did get many major donations to

maintain and build roads. But by 1985 only 15% of the road network of 1960 was passable.
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Infrastructure Investment

In 2022 the World Bank approved a plan to spend $500 million to strengthen transport and

connectivity in the DRC (World Bank Group - Press Release, 2022).1 One of the plan’s key

points focuses on upgrading and paving 440 km of weather-resistant roads in the Eastern

part of the country (North Kivu and Kasai provinces in particular). This is not the first

major investment of this kind, as Schouten et al. (2022) write: “The World Bank poured

billions of dollars into the country’s [DRC] transport network in a Sisyphean procession

of projects that brought neither durable development nor state authority.” It is pivotal to

assess road quality before and after projects are carried out, to guarantee the success of

infrastructure investments and the most effective use of resources. Monitoring road quality

on a large scale on the ground is costly and impossible in conflict-prone areas such as Eastern

Congo, even more so if the evaluation needs to be updated regularly. With this project,

we aim to evaluate the prospects of leveraging satellite imagery to carry out this large-scale

evaluation at a relatively low cost.

1The authors of this thesis were funded by the World Bank to carry out this project.
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2. Literature Review

This section summarizes the literature on road quality assessment leveraging satellite im-

agery and machine learning. It focuses on the data sources and methods used and the

achieved results.

2.1 Measures of Road Quality

When discussing road quality assessment, it is crucial first to define road quality and identify

an established measure of road quality serving as ground truth to which we can relate the

performance of our approach. In this regard, the literature is converging upon a standard,

the vertical displacement of a vehicle as it travels along a road. The gold standard of

measuring this vertical displacement is the International Roughness Index (IRI).

The IRI is a measurement that was created by the World Bank in 1986 to measure the

“bumpiness” of any road, from airplane runways to jungle dirt roads. To obtain IRI mea-

surements a device measuring vertical displacement is calibrated to a specific vehicle. This

vehicle then travels along the road at a given speed to continuously measure vertical dis-

placement per kilometer traveled (m/km). Depending on the data sources, this continuous

displacement is aggregated and averaged over segments of different lengths. Therefore, IRI

measurements exist at different granularity levels, with average IRI values, for example, for

every ten or every 100 meters. These values are usually stored in shapefiles, which combine

the IRI information with the precise geometric location of the road segment from which

they originate. While IRI is the gold standard of road quality evaluation, it is very tedious

to measure because someone must physically set up the device and drive along every road

to be included. This process is extremely costly and time-consuming in large countries such
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as DRC, with many roads in bad conditions drastically reducing travel speeds. Because

of this limitation, IRI data is very scarce, particularly in developing countries with weaker

infrastructure. Its scarcity is not just an issue for policy-making but also for establishing

alternatives to measure road quality using machine learning. Training algorithms to eval-

uate road quality leveraging satellite data requires large datasets combining imagery and

labels of road quality. Without large amounts of road quality data serving as ground truth,

the algorithms cannot uncover underlying patterns in imagery and identify their relation

to road quality. Having few resources providing reliable IRI measurements in developing

countries is one of the reasons why there is little literature in this area.

In the two studies most related to our approach, the researchers use IRI data as the

basis of their models (Cadamuro et al., 2018; Thegeya et al., 2022).

There exist a few potential alternatives to using IRI as a ground truth for road qual-

ity. One approach described in the literature is to use a less sophisticated technique for

measuring road bumpiness. Brewer et al. (2021) use a cellphone application to record the

movements of users’ phones with the associated geolocation while they travel in vehicles

over roads. Another possible approach to providing labels to machine learning-based meth-

ods is to identify and label road quality issues on image data manually. This alternative is

unfeasible for satellite imagery, mainly because even with high-resolution satellite imagery,

it is impossible to identify single potholes. Leduc and Assaf (2020) demonstrate the feasibil-

ity of manually labeling potholes on high-resolution street-level footage of GoPro cameras

mounted on vehicles. Similar to IRI measurements, acquiring this kind of footage requires

vehicles to drive along all road segments to be evaluated. This limitation is why this type

of footage is incompatible with the research questions our study aims to answer.

2.2 Satellite Imagery

As the primary goal of this study is to evaluate road quality for hundreds of kilometers, we

decided to base our approach on satellite imagery as it is a relatively easily accessible and

versatile data source capturing road characteristics. In the studies using satellite data, the
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specific imagery used can be characterized by different parameters. The most important is

the resolution, defined as the distance on the ground corresponding to the height or width

of one pixel in the image. Analyzing the literature, we found large variance in resolution

used in the three studies most closely related to our project.

One would expect that this significant difference in resolution manifests in the prediction

performance of the models using this data, a hypothesis that we will have a closer look at

in the next section.

Besides the image resolution, we also found different data sources used in these stud-

ies. Most allow accessing satellite imagery from a specifiable satellite on a selectable date,

thereby ensuring consistency between images that the algorithms are trained on.

Another essential aspect of combining satellite imagery with road-quality data to train

machine learning models is how to split the imagery into patches that capture roads and

are of a consistent size that a computer vision algorithm can process. This requires that the

size of all patches is constant. Cadamuro et al. (2018) and Thegeya et al. (2022) trace along

the roads and create a box over the center of the road. In the third study (Brewer et al.,

2021), an algorithm tracks the path traveled by the application users and zooms to the

coordinates of the drivers’ locations. In this context, there are two main points to highlight.

First, following the exact directions of the road by adjusting the angle of the bounding

boxes cutting out the road segments results in distortions on a pixel level when feeding

the imagery as rectangles to the neural networks. Therefore, all bounding boxes must be

aligned with the horizontal and vertical axis. Second, the dimensions of the boxes play an

important role not just because they have to be resized to the dimensions the algorithms

require but also to exclude surrounding areas, potentially confusing the model. A CNN

generally learns with enough training data which part of an image is relevant for correct

classification. Correlational patterns like roads in urban areas being, on average, of higher

quality may result in the network basing its predictions on the presence of houses rather

than the characteristics of roads. By adjusting the image size, the surrounding captured

on each tile can be limited. Researchers successfully used images of size 224x224, and also

64x64 that were then resized to 224x224 (Cadamuro et al., 2018).
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Paper Year Images Labels Resolution
(m/px)

Total
Images

(Cadamuro et al., 2018) 2018 satellite IRI / 10 m 0.5 ∼115k est.
(Thegeya et al., 2022) 2022 satellite IRI / 100m 10 94,000

(Brewer et al., 2021) 2021 satelite and
Google Maps app data 0.3 53,686

Our study 2023 Google Earth IRI / 100m 0.6 10,081 (256px)
20,876 (64 px)

Table 2.1: Table comparing data quality and quantity.

Other Inputs

Satellite imagery captures characteristics of roads that allow for road quality assessment.

Other factors varying with geolocation not captured by imagery are also expected to be im-

portant in predicting road quality and can therefore be included in the models. For example,

tabular data such as average daily temperature, precipitation, land gradient, and the local

population allow contextualizing the imagery and thereby increasing the model’s perfor-

mance. For Thegeya et al. (2022), this effect was very large and improved the performance

of a binary classifier from 61% accuracy to 75%.

2.3 Methodology and Results

As previously elaborated, the IRI is a continuous unit of measurement and standard for

quantifying road quality. Minor differences between IRI values are hard to interpret and

not helpful in policymaking, where the main focus lies on distinguishing good from bad roads.

Most studies, therefore, split the IRI’s range into multiple classes and train classification

rather than regression algorithms. Since there are only some vague guidelines and no clear

standard for what IRI value categorizes a road as good or bad, it is difficult to capture

the decision process underlying the exact cutoffs used in the literature. Further, different

studies also use a different number of classes in the range of 2 to 5.

Neural Networks and particularly approaches based on Convolutional Neural Networks

have become the standard in the Computer Vision literature. The architecture used in
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Figure 2.1: Some ranges for the IRI scale (Sayers et al., 1986).

Cadamuro et al. (2018) and Thegeya et al. (2022) are AlexNet, SqueezeNet, and VGG.1 We

can see that Cadamuro et al. (2018) achieves higher accuracy than Thegeya et al. (2022),

part of which likely can be attributed to the higher image resolution. It is important to note

that these results cannot be compared as accuracy as a performance metric highly depends

on the class distribution.

Paper Cat. Results Best Model
Cadamuro et al. (2018) 2 / 5 88% / 73% VGG-11 and SqueezeNet

Thegeya et al. (2022) 2 / 4 60% / 39%
(87% / 75% w tab. data) VGG-11 and SqueezeNet

Brewer et al. (2021) 3 80% InceptionResNetV2

Table 2.2: Table comparing results from the most relevant studies.

Besides the points already mentioned, the main takeaways from the literature review

are the following: Firstly, we must ensure that labels and satellite imagery match up time-

wise, as it is important to account for the fact that roads change over time. Secondly,

there is reason to believe that increasing the number of training examples will not improve

performance (Thegeya et al., 2022), but because in this case the authors used 10 m/px

resolution, it may be that there was limited information to be learned from these images in

the first place. Our goal should be to obtain a number of images on the order of the number
1SqueezeNet is designed to perform as well as AlexNet but with fewer parameters. VGG stands for

Visual Geometry Group and improves performance in cases with lots of images.
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used in Cadamuro et al. (2018) which achieved the best results reported in the literature

and has an estimated 115 thousand image-IRI pairs.2

2We estimated this number based on the length of road segments, the image resolution and the image
size reported in the paper.
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3. Data Sources and Preprocessing

3.1 Data Sources

As previously described, recording IRI data is very time and labor-intensive. Further, the

region of interest for our study suffers from continuous conflicts, making it very hard to

record the IRI data, which is precisely why we are undertaking this project. Unfortunately,

the lack of IRI data also implies that no data available would be granular enough to serve

as a label for training our model in the DRC. Fortunately, we were granted access by the

World Bank to a data set of 112,901 IRI measurements for Liberia. Therefore, we decided

to train our road quality assessment model in Liberia and then apply it in the Sud Kivu

region of the DRC. Liberia shares a few climate and geographic characteristics that make

this an avenue worth pursuing. First, Liberia is located on the same continent but around

6 degrees above the equator while Sud-Kivu is located around 3 degrees below the equator.

Liberia has a tropical climate and Sud-Kivu has tropical and subtropical climates. Liberia

is a little warmer, with annual temperature fluctuations ranging from 18-32 ◦C, while in

Sud-Kivu from 14-28 ◦C (World Bank Climate Change Portal: DRC; World Bank Climate

Change Portal: Liberia). Sud-Kivu receives significant rainfall (one of the main challenges

facing people building infrastructure), on the order of 1600 mm annually. But it turns out

Liberia is even wetter, with interior regions getting on the order of 2000 mm precipitation

annually and coastal areas even 2500 mm on average. Besides many characteristics in

common, there are also stark geographic differences, which must be considered. Liberia is

a coastal country, while Eastern DRC lies in the continent’s center and is characterized by

a mountainous landscape. Further, the rainy seasons of both countries are not at the same

period of the year. While the rainy season of the DRC lasts from September to May, that
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of Liberia lasts from May to October.

(a) The full map.

(b) The road categories, from
non-motorized to trailers weigh-
ing more than 20 MT.

(c) A close up of some of the
categorized roads from the map.

Figure 3.1: One of the road type maps of Sud-Kivu made for humanitarian organizations.

3.1.1 Road Type Maps

The World Food Program created a series of maps for humanitarian organizations to navi-

gate different parts of the DRC. These maps contain information about the vehicles that can

be used on certain roads. We also found similar maps for Liberia, although the categories

used for the road classification are different but follow the same logic. The maps are too

large to be displayed here, but snapshots of a sample map are shown in Fig. (3.1).

3.1.2 Liberia IRI Data

The IRI data for Liberia consists of 112,901 IRI measures taken from April 1, 2016, until

July 31, 2016. Each value corresponds to a road segment of around 100 meters documented

in m/km.

3.1.3 Google Earth Tiles

High-resolution satellite data at the 30-50 cm level is expensive, so we looked for alternative

data sources. We found an application called Google Earth Images Downloader1 that queries

Google Earth for satellite image tiles in 256x256 resolution. To download these images, one
1More information here: https://www.allmapsoft.com/geid/
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must specify the four coordinates to define the rectangle of the area to be downloaded, the

zoom level, and a date. The program only takes images as close as possible before the speci-

fied date. Because of cloud cover, brightness issues, and limitations on the range of satellite

coverage, the map visible on Google Earth is a patchwork of images from different satellites

taken from different angles on different days. This means that the quality and characteris-

tics of images vary, which may present a challenge for our algorithm. Given enough data

we expect the algorithm will learn to filter out these variations. Following Cadamuro et al.

(2018) and Thegeya et al. (2022), we only included imagery taken within one year before to

one year after the window in which the IRI values were measured. Unfortunately, there was

only minimal imagery coverage at the highest resolution available during that period, so we

decided to download the data at zoom level 18 (60 cm/px)(Stefanakis, 2017). For Sud-Kivu

we also downloaded the tiles at the same resolution but for the date corresponding to the

years in which the road-type maps were issued.

3.1.4 Shape Files

For the DRC we were able to find a shapefile from OpenStreetMaps, an open-source maps

initiative.2 This file contains 636,790 roads in the DRC including those in the Eastern

region.

3.2 Preprocessing

Working with satellite imagery implies handling large quantities of data. One preprocessing

step taking fractions of a second on a single image accumulates quickly to hours or even

days for the entire dataset. It is therefore crucial to exclude data not containing the desired

information as soon as possible in the preprocessing pipeline. With the program we used

to download the satellite data, it is only possible to define the boundaries of a rectangle to

download all images within. We, therefore, had to download over 3 million tiles covering

Liberia and Sud-Kivu. Each image has a size of 256 x 256 pixels. For the road quality

assessment model, we only needed images showing roads for which we had road quality data
2Downloaded from: http://download.geofabrik.de/africa.html
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that were taken within one year of the quality evaluation date. Fortunately, the downloaded

data contains, besides the pictures, metadata about the geolocation of each tile, its location

within the rectangle of downloaded data, and the date the satellite image was taken. Using

this information, we could exclude images irrelevant to our project based on metadata

without having to interact with the files themselves. Following the approach of Cadamuro

et al. (2018), to train our model we included imagery taken between one year before and

one year after the quality assessment.

Figure 3.2: Map of downloaded satellite imagery for Liberia, categorized by date. The roads
for which we have IRI data are shown in red.

As the IRI values in Liberia were recorded between April and July 2016, we followed

the literature by reducing our data set to images taken between at most one year before or

after this period. For Sud-Kivu, we only included data taken in 2018, the year in which the

map qualifying different road types was published by the World Food Program. Fig. (3.2)

shows our study regions highlighting the areas where we had satellite data for the relevant
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period of our study. This corresponds to a total of 50 thousand images out of the 3 million

downloaded initially.

Besides the date, the second essential inclusion criterion was whether an image contained

sections of roads for which we had labels. The lines of shapefiles symbolizing roads sometimes

do not represent the roads’ exact location. To account for possible misalignment between

roads and shapefiles, we created a buffered version of the shapefile with a buffer size of 10

meters. Having the roads represented by a wider buffer rather than a single line increases

the probability that the space defined by the shapefile includes the roads’ actual position on

the images. There is, however, a trade-off between widening the buffer to include the exact

position of roads with high probability and including more surrounding irrelevant parts

within the buffer. This trade-off is a classical precision-recall trade-off where widening the

buffer corresponds to increasing recall on the cost of precision and vice versa. To identify

tiles containing roads computationally efficiently, we first cut the buffered shapefile to the

spatial extent of our downloaded rectangle of satellite imagery. Then, we converted the

buffered shapefile to a raster dataset specifying the number of rows and columns to exactly

match those of our image rectangle. All raster cells in positions representing tiles containing

no road segments are assigned zero. Combining this raster with metadata about the location

of image tiles within the downloaded rectangle allowed us to rapidly identify tiles capturing

roads even for large quantities of images. In Liberia, 30 thousand images contained some

of the 10 meters buffer around roads. In Sud-Kivu, 20 thousand. Including only roads for

which we had imagery taken within our study period, we had a sample size of 10 thousand

tiles for Liberia and 6 thousand for Sud-Kivu.

After identifying the relevant tiles for our study, we calculated the exact IRI value

assigned to each tile in Liberia. Since each road segment for which we had one IRI value

was about 100 meters long, one tile possibly contained multiple different-sized parts of road

segments, each assigned to an IRI value. To best represent the quality of roads in an image,

we calculated the mean of IRI values of captured road segments within an image weighted

by their pixels share. Therefore, we created a raster of the buffered shapefile for each tile

with the same dimensions as the image’s pixel size (256 x 256) (see 3.4). The value of each
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Figure 3.3: Identifying the images capturing relevant roads.

cell in the raster corresponded to the IRI value of the road segment at the same position.

We then calculated the mean cell value for all non-zero-valued cells in the raster to get the

IRI label for a specific tile.

Figure 3.4: Assigning one IRI value per image

Previous literature found that considerable variation of road quality for road segments

captured within one image or for road segments for which only one mean IRI value is

available limits the CNNs abilities to learn characteristics associated with road quality. In

our case, the IRI data is the mean IRI in meters per kilometer for segments of around

100 meters. While we cannot improve the granularity of our IRI data, one parameter we

can manipulate is the image size which correlates with the length of road segments and

the variation of road quality captured. As noted before, our images of 256 x 256 pixels
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correspond to a height and width of about 150 meters. These images often capture parts

of multiple road segments with different IRI values. Reducing image size might be helpful

for the model to train. Still, since our IRI values are averages of 100-meter segments, it

might also worsen the result because the model will only see portions of the sections based

on which we assign the label to each tile. To understand how the spatial extent captured

on each image influences the performance of our algorithm, we split our entire sample into

images of 64x64 and reassigned labels using the raster-based approach previously described.
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4. Methodology

For our study we are aiming to: (1) train road quality detectors that predict IRI categories in

Liberia under conditions as similar as possible to the models in the literature for comparison

purposes, (2) train another network using the same data but with intervals chosen specifically

to detect roads of poor/bad quality, (3) provide holistic model performance metrics and

quantify the uncertainty of our predictions, (4) apply our best performing model to roads

in DRC and relate the results to road type maps published by the World Food Program.

4.1 Choice of CNN

We decided to use transfer learning for our classification task. Transfer learning is defined

as using models pre-trained on large image classification datasets. Using models with pre-

trained weights, training the last layers, and adjusting the number of output classes performs

well on numerous image classification tasks.

We compare our models’ performance against those in the literature using binary classi-

fication. The primary limitation in comparing results across road quality assessment litera-

ture is that authors use data from different countries and different classification thresholds.

Further, the studies most relevant to our project use accuracy as the primary performance

metric, a measure susceptible to changes in the data distribution. To make the comparison

as accurate as possible, we decided to take thresholds reported in the two papers we want to

compare our model with, namely an IRI value of 20 for Cadamuro et al. (2018), and 43.6%

based on the distribution of IRI values as done by Thegeya et al. (2022). Besides these

thresholds, we also report results for a binary classifier divided at the median IRI value of
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our training set. To compare results, we used the best CNN-based model reported in both

papers, VGG-11. In addition, we also work with EfficientNetV2, a CNN variation with good

performance that trains 5x-11x faster than similar networks (Tan and Le, 2021). Reducing

training time is crucial for such a data-intense task as it allows us to iterate and experiment

with different settings, thereby being more efficient and increasing performance.

Besides our original 256x256 pixel image tiles down-scaled to 224x224 we also compare

performance with 64x64 pixel tiles that are up-scaled to 224x224. Of course, reducing the

image size also increases our final sample size from 10,081 to 20,876.

4.2 Choosing Appropriate Categories

Converting a continuous metric as IRI to a classification problem requires thoughtfully

setting thresholds to split the distribution of values into classes. We assume policymakers

are particularly interested in identifying roads in poor/bad conditions. Therefore, as our

IRI threshold for poor/bad quality roads in our binary classifier we selected a value of 15

based on the scale presented in Fig. (2.1), because an IRI value above 15 selects for rough

unpaved roads and worse. This threshold is more lenient than the one chosen by Thegeya

et al. (2022), as they assume an IRI value above 5 is already an indicator of poor road

quality. On the other hand, we are stricter than Cadamuro et al. (2018), who chose an IRI

value of 20 as the breaking point.

The criteria for choosing our class intervals for the five-label classification task is con-

ditioned on the previous literature and the inherent distribution of our data set. We use

Cadamuro et al. (2018) instead of Thegeya et al. (2022) as a reference, provided the road

physiognomy of Kenya resembles much more that of Liberia and DRC than the one in the

Philippines. Recall the class intervals chosen by Cadamuro et al. (2018) read as follows:

great (0-7), good (7-12), fair (12-15), poor (15-20), and bad (20+).

We adopted the same labels but implemented a series of modifications according to our

data’s distribution of the IRI values. Fig. (4.1) illustrates that the distribution clusters

around the median at 14.4 and shows a positive skew. We’ve recalibrated the fair-good
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Figure 4.1: IRI distribution in Liberia with vertical lines indicating the class intervals and
label indicating the relative distribution weight of each class

boundary from 12 to 10. This adjustment aims to encapsulate the natural cluster within

the 10 to 15 range. Moreover, we’ve broadened the boundary between poor and bad by

an increment of 5, balancing the proportion of measurements within the extreme classes.

Through these adjustments, we’ve achieved that both extreme classes (great, bad) contain

the same proportion of samples in our dataset.
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5. Classification Models

In this chapter, we initially compare our results to the literature. We then fine-tune a 2-class

and 5-class EfficientNetV2 with adjusted class boundaries. Finally, we calibrate the output

probabilities and attempt to quantify uncertainty using conformal inference.

5.1 Binary Classification

Comparison with Literature

As the first step of our analysis, we aim to compare the predictive abilities of our model

for images of the dimensions 64x64 and 256x256 to the results of Cadamuro et al. (2018)

and Thegeya et al. (2022). We calculate the performance metrics reported by averaging

them for the test set during the last three training epochs. As previously described, this

comparison has to be taken with a grain of salt. Both papers use IRI data for other countries

and report their results using accuracy as the primary evaluation metric. We follow this

approach even though the different distributions of IRI values in each study make comparing

model performance based on accuracy difficult. Accuracy is not a holistic metric of model

performance because it is prone to be influenced by data distribution and class imbalance, so

we also provide AUC. Moreover, accuracy does not distinguish between the different types

of errors. The results are displayed in Table (5.1) and Table (5.2):

Our model achieves higher accuracy than Thegeya et al. (2022) but lower accuracy than

Cadamuro et al. (2018). One reason for performing better than Thegeya et al. (2022) is the

higher image resolution of our data set. Surprisingly, our 64x64 pixel images decreased the

performance of our model.
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Accuracy AUC

Binary Threshold Model Cadamuro et al. (2018) Us Us

IRI = 20 VGG-11 (64) 0.90 0.62 -
VGG-11 (224) 0.87 0.74 0.73

EfficientNetV2 (224) - 0.80 0.75
median VGG-11 (64) - 0.54 0.55

VGG-11 (224) - 0.64 0.67

Table 5.1: Accuracy results (and AUC) for our binary models using the same IRI split as
those in Cadamuro et al. (2018). In our case, an IRI value of 20 gave us almost exactly an
80%/20% split. The median was at an IRI value of 14.32 (64) and 14.41 (256).

Accuracy AUC

Minority Class Share Model Thegeya et al. (2022) Us Us

43.6% VGG-11 (64) 0.6 0.53 0.52
VGG-11 (224) 0.6 0.63 0.69

Table 5.2: Accuracy results (and AUC) for our binary models using the exact same split as
those in Thegeya et al. (2022). We note that in their case 43.6% of the data was contained
below an IRI value of 5, where as for our case it was for an IRI value of 13.40 (224) and
13.26 (64).

Addressing Class Imbalance

The main interest for policymakers in machine learning-based road quality assessment lies

in the ability to identify a relatively small portion of roads that are in particularly bad

condition and likely require reconstruction work. In such a problem setting, class imbalance

naturally arises as not all prediction classes are the same size. There are two main techniques

to address class imbalance. One is to up-sample (down-sample) the minority (majority)

class in the training sample. Using this approach for binary classification, we sampled

from the minority class by a factor equivalent to the proportion of the majority class and

vice versa, thereby creating an artificially balanced training set. All the performance metrics

throughout the paper are obtained after up-sampling the minority class. Besides eliminating

class imbalance, we occasionally used this method to increase the training set sampling

probability of the most relevant classes for our analysis. The second approach to deal with

21



class imbalance is to assign weights to the binary cross entropy loss function and thereby

adjust the impact of wrongly classifying samples of each class on the total loss. By assigning

a bigger weight to the minority class, the model will give it a larger relative importance when

updating the weights during backpropagation.

Performance Metrics with Adjusted Threshold

We trained the three common architectures used across the referenced papers (AlexNet,

SqueezeNet, and VGG-11), and EfficientNetV2 outperformed all of them. That’s why

throughout this section and the rest of the paper, we will use the EfficientNetV2 archi-

tecture. Now, we train an EfficientNetV2 network using a threshold of 15 that, as stated

in 4.2, is regarded as the breaking point between the cluster of poor and good roads. ROC

curves indicate the algorithm’s performance, providing meaningful information and facili-

tating comparison. Based on the ROC curve, we chose the best threshold to evaluate our

predictions using the G-mean calculated from the training data, which helps us stabilize

predictions for both classes. Figure 5.1 shows the ROC curve for the described binary clas-

sification splitting the IRI values at 15. The classification report with the optimal threshold

is shown in Table (5.3). We note very balanced results for both classes.

Figure 5.1: ROC Curve with reported AUC and marked in black the optimal threshold.

22



Table 5.3: Optimal Threshold Classification Report

Precision Recall F1-Score Support
Class 0 0.72 0.69 0.70 792
Class 1 0.67 0.69 0.68 706

Accuracy 0.69 1498

5.2 Multi-Class Classification

Fine-Tuning Pre-Trained Model

We split our data set into three sets: training (80%), calibration (10%), and validation

(10%). As explained in 4.2, the class intervals used in our project are driven by our data

distribution and the previous literature. For our five-class classifications, we use the fol-

lowing IRI intervals: great (0-7), good (7-10), fair (10-15), poor (15-25), and bad (25+).

We assumed that policymakers are primarily interested in identifying poor and bad-quality

roads. Especially bad-quality roads account only for a small share of our data. To increase

the percentage of bad roads (class 4) in our training sample, we resampled our original dis-

tribution [0.07, 0.13, 0.33, 0.38, 0.08] by sampling from each class with a specified probability.

After doing so, our new training set was distributed as follows: [0.18, 0.11, 0.23, 0.31, 0.27].

We trained our EfficientNetV2 on this new training set for 25 epochs trying different

combinations of batch size and learning rates for the Adam optimization algorithm. We

finally took a batch size of 32 and a learning rate of 0.001 for training. We unfroze the

final two layers for the model to have sufficient flexibility to fine-tune our data set. As

EfficientNetV2 is prone to over-fitting, we introduced a dropout layer with a dropout of 0.3

and a batch normalization layer before the final linear layer. The batch normalization layer

is also helpful to yield more calibrated probabilities (Guo et al., 2017). Data augmentation

such as rotation, flipping, and trivial augment wide did not significantly impact performance.

Performance Metrics Overview

Table 5.4 shows the classification report for the 5-class classification with the EfficientNetV2

model with the training set sampled as described above. The model is relatively successful

in detecting instances of the ‘poor’ roads but struggles more in correctly identifying ‘bad’

23



roads. Despite their lower representation in the simulated training set, we can observe that

the recall for ‘great’ and ‘fair’ roads is higher than for ‘poor’ and ‘bad’ roads. It is worth

noting that the ‘great’ roads are relatively well-classified despite forming a small class in the

overall distribution. Further, ‘bad’ roads are not as well classified despite constituting the

second largest category in the re-sampled training set.

Table 5.4: Classification Report for the 5-class model

Precision Recall F1-Score Support
Great 0.45 0.62 0.52 85
Good 0.31 0.20 0.24 152
Fair 0.45 0.56 0.50 362
Poor 0.56 0.48 0.52 431
Bad 0.43 0.40 0.42 94

Fig. (5.2), shows the OneVsRest confusion matrix for ‘poor’ and ‘bad’ roads. As the

name suggests, OneVsRest transforms the multilabel into a binary problem by comparing

one class against all others clustered together. Observing the OneVsRest results for our

classes of interest allows a more precise interpretation of the model’s performance through

2-dimensional confusion matrices.

Figure 5.2: OneVsRest confusion matrix for the (a) ‘poor’ (class 3) and (b) ‘bad’ (class 4)
road quality categories.

We thereby gain additional insight that the five-class classification report’s precision,

recall, and F1 scores might not explicitly reveal. One noteworthy observation for ‘poor’
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(class 3) roads is a large number of False Negatives, occasions where ‘poor’ roads were

misclassified as not-‘poor’. The model often misidentifies actual instances and performs

poorly in this classification task. For the ‘bad’ category, the results are better. They show

that the model almost doesn’t misclassify not bad roads as being bad. The model generally

shows a decent performance for predicting bad road quality.

5.3 Quantifying Uncertainty

None of the performance metrics reported so far allow us to quantify the uncertainty of our

model’s predictions. This section consists of two parts: model calibration and construction of

prediction sets that contain the true label with a certain level of confidence using conformal

inference.

Calibrating Predicted Probabilities

A calibrated model predicts certain classes on average relative to the probability of these

classes occurring. For example, in a zero-one binary classification task, an overconfident

model would predict for a given subset 90% of the time a one even though only 70% of

the true labels of samples are actual ones. After passing the logits of our model through a

softmax function, we noticed the most likely predicted class was leaning towards 0.9− 0.95

for most of the observations, way more than its actual occurrence in the dataset. This was

confirmed by iterating over a barplot representing the ranked classes.

In Figure 5.3, we see a plan of the process applied to compute the final adjusted proba-

bilities by first splitting the data set. We then train our model on the training data. With

the weights from this step, we predict each observation in the calibration set (passing the

logit outputs through an external soft-max to convert them to probabilities). Then we train

a calibration model on the calibration set using as inputs the predicted probabilities of the

training model and as labels the true class belonging to each observation of the calibration

set. We will employ a widely used calibration method, Platt scaling, with logistic regression

in the calibration model. In addition, we use our model fitted on the training set to pre-

dict the test observations and obtain the output probabilities post-softmax. The final step
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Figure 5.3: Data Set split and Model Calibration dynamics

involves fitting the calibration model on the predicted test set probabilities to get the final

adjusted predictions.

(a) Before (b) After

Figure 5.4: Predicted class probability frequency before and after model calibration

In Figure 5.4, we see the predicted class probability frequency before and after the logis-

tic regression calibrated the probabilistic outputs. Before the calibration step, the frequency

distribution of the predicted class probabilities is biased towards the extremes, a clear in-

dication that the model is not well calibrated and its predictions cannot be interpreted
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as probabilities. After tuning the probabilities by the calibration model, the count range

shrinks from a maximum value of around 3600 to 2100, meaning the predicted probabilities

are no longer clustered in the extremes. Moreover, the upper bound of the predicted proba-

bilities decreases from 1 to below 0.7, implying that the model is not producing overconfident

predictions. Now that we improved the calibration of our model, we will be able to imple-

ment conformal inference and attain reasonably sized predictions on non-trivial prediction

sets.

Conformal Inference

Conformal inference provides a framework to quantify the uncertainty associated with a

prediction independent of the underlying data distribution. It is a distribution-free method

and enables us to construct valid prediction sets or intervals for any model, including deep

learning architectures. The main objectives of the conformal procedure are to attain correct

coverage (the probability that our prediction belongs to the prediction set) and having

adaptive sets-prediction set size should reflect the difficulty of the classification task.

We will use a simple conformal procedure following Angelopoulos and Bates (2021) and

assuming that non-exchangeability and symmetry hold as in Barber et al. (2022). The

procedure is as follows:

1. Fit a model on the training set and use the test set1 to obtain the softmax output

probabilities,

2. Define as conformal score2:

Ei =
k∑

j=1

π̂(xi)(j)

where π̂(xi) is the sorted softmax output and k is the rank of the class. The conformal

score Ei is the total mass of softmax output until you reach the true class,
1We are not implementing split conformal inference, so we will not be using the calibration set for the

conformal procedure
2nonconformity score measures the gap between the probability score for the correct class produced by

the ideal classifier and the classification score produced by our model
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3. Compute the 90th quantile of the conformal scores adjusted by a finite sample correc-

tion,

4. Select {the k most likely classes where
∑k

j=1 π̂(xn+1)(Yn+1) ≤ q̂}. As depicted in

Fig. (5.5), we include in our prediction set the most likely classes up until the cu-

mulative softmax probability is above the threshold q̂.

If the total softmax mass exceeds q̂, then we expect our true label to be within the predicted

set around 90% of the time.

(a) Class 3 (b) Class 4

Figure 5.5: Prediction sets: For a) the true class is 3 and the prediction set is conformed by
2, 3, 1 and in b) the true class is 4 and the prediction set is 3, 2, 4

Figure 5.5 shows the ranked cumulative softmax predicted probabilities for our test set

and the true label. For a), the true class is 3, and the prediction set is conformed by 2, 3, 1,

while in b), the true class is 4, and the prediction set is 3, 2, 4. We need to distinguish

between marginal and conditional coverage to affirm that the prediction set contains the

true label with 90% confidence. Marginal coverage is the overall coverage among all groups,

whereas conditional coverage is a stronger assumption that enforces the coverage to be at

least 90% for every class.

As depicted in Table 5.5, the conditional coverage for class 3 is 0.97, meaning the model

is particularly adept at producing prediction intervals that encompass the true class label
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Table 5.5: Conditional Coverage per Class

Class Conditional Coverage
0 0.68
1 0.697
2 1
3 0.9675
4 0.7234

for this class. However, for class 4, the conditional coverage dips to 0.72, suggesting the

prediction intervals may not be as reliable for capturing the ‘bad’ road tiles. This lower

conditional coverage for class 4 aligns with our previous observations from the precision and

recall analysis (Table (5.4)): the recall for class 4 was relatively low, indicating that the

model struggled to identify all relevant instances of the ‘bad’ road class.
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6. Classifying Road Type

This project aims to analyze the capabilities of satellite-based approaches for road quality

assessment in DRC. It is motivated by the fact that available road quality data in Eastern

DRC is scarce and almost impossible to acquire. While the primary motivation for this

project, the absence of available data is also its most significant hurdle. Having no granular

data labels for DRC means it is impossible to train a computer vision model on satellite

imagery of roads in DRC, and there is no other choice than to train the model in a different

location with enough data available. Following this approach, the main question is how

to ensure correct predictions while having a domain shift in the imagery. Can a model

trained in Liberia correctly predict road quality in DRC? We try to answer this question

by leveraging the available data sources for both countries. The maps provided by the

World Food Program distinguish between roads that can be used by either light or heavy

(all) vehicles. Assuming that this distinction correlates with the vertical displacement of a

vehicle, in Fig. (3.1) we compare the distribution of IRI classes for road types passable by

light and heavy vehicles. We do so for three different settings. Twice on the test set for

Liberia, once with classes assigned using the actual IRI values and once using the predictions

of our best-performing model. The third plot then shows the same distributions based on

IRI classes predicted from satellite imagery of roads in DRC.

While the plots for Liberia do not seem to provide evidence that the road types on the

maps are correlated with road quality, the plots for Congo paint a different picture. For

Congo, there seems to be a clear relation between road type and road quality, as the share of

bad and poor roads is higher for light vehicle roads, while at the same time, the percentage

of good and fair roads is lower. This is surprising as our model was only trained with
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Figure 6.1: The distribution of road type classes in Liberia as well as the predictions for
Liberia and Sud-Kivu.

labels and imagery from Liberia, where we cannot observe the same relationship for both

the actual IRI values and the IRI predictions. What we can observe in all three settings is

a stark reduction in good-quality roads between the all-vehicle and light-vehicle types. We

expect this effect to be driven mainly by the pavement type, as it is easier for the model

to distinguish paved from unpaved roads, which aligns with the literature (Brewer et al.,

2021).
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Figure 6.2: A set of five randomly generated images from each of the five classes for road
tiles in Sud-Kivu.
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7. Conclusion

In this project, we aimed to leverage satellite imagery to successfully identify bad-quality

roads in Eastern DRC. We based our analysis on two classification scenarios by training a

2-class and a 5-class classifier. Due to the lack of road quality data in DRC, we trained

both models on data from Liberia. We then evaluated their performance and found that

both performed reasonably well compared to results achieved in similar studies. We used

road-type maps as intermediaries to establish a connection between the models trained in

Liberia and road quality in DRC. Even though it is impossible to quantify the performance

of our model in DRC, its road quality predictions for different road types match our expec-

tations. Further, manual inspection of images of each prediction category and proportions

of predicted classes suggest these are reasonable results for roads in this region.

While we achieve some success in our models, we note several limitations worth elabo-

rating. To take stock, one of our models performs slightly better than that of Thegeya et al.

(2022), which uses 10 m/px resolution imagery. We believe predicting road quality with

an image quality of 60 cm/px is a highly ambitious task. Any cracks or potholes will be

completely invisible. Further, the concept of trying to measure bumpiness, caused mainly

by the vertical displacement of the road, with pictures from above, precisely where it is most

difficult to discern, presents quite a challenge. Distinguishing between paved and unpaved

roads, as seen in the latter part of the study and already documented in the literature

(Brewer et al., 2021), seems very well suited for this resolution level. But higher resolution

imagery would probably be required to achieve high accuracy in this task. We would be

quite curious to see how our algorithms would perform, and how this performance would

change at different levels.
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Moving to our particular experiments, we believe that our image collection technique

(diverse images from different seasons and different satellites) could have affected the per-

formance of our models. Given more data, our model could have learned more, but it would

have undoubtedly helped us to have more standardized images from a single source. Despite

the limitations mentioned here, we see promise in the approach of using satellite data to

measure road quality; we expect that as quality of satellite imagery and the abilities machine

learning algorithms continue to improve, so will their accuracy in detecting decaying roads

for regions without any data to train on.

34



Bibliography

A. N. Angelopoulos and S. Bates. A gentle introduction to conformal prediction and

distribution-free uncertainty quantification. CoRR, abs/2107.07511, 2021. URL https:

//arxiv.org/abs/2107.07511.

R. Barber, E. Candes, A. Ramdas, and R. Tibshirani. Conformal prediction beyond ex-

changeability. 02 2022.

E. Brewer, J. Lin, P. Kemper, J. Hennin, and D. Runfola. Predicting road quality using

high resolution satellite imagery: A transfer learning approach. PLOS ONE, 16(7), 2021.

doi: 10.1371/journal.pone.0253370.

G. Cadamuro, A. Muhebwa, and J. Taneja. Assigning a grade: Accurate measurement of

road quality using satellite imagery. CoRR, abs/1812.01699, 2018. URL http://arxiv.

org/abs/1812.01699.

L. F. Duffield. Vertisols and their implications for archeological research1. American An-

thropologist, 72(5):1055–1062, 1970. doi: https://doi.org/10.1525/aa.1970.72.5.02a00040.

URL https://anthrosource.onlinelibrary.wiley.com/doi/abs/10.1525/aa.1970.

72.5.02a00040.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural networks.

In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference on

Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 1321–

1330. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/guo17a.

html.

35

https://arxiv.org/abs/2107.07511
https://arxiv.org/abs/2107.07511
http://arxiv.org/abs/1812.01699
http://arxiv.org/abs/1812.01699
https://anthrosource.onlinelibrary.wiley.com/doi/abs/10.1525/aa.1970.72.5.02a00040
https://anthrosource.onlinelibrary.wiley.com/doi/abs/10.1525/aa.1970.72.5.02a00040
https://proceedings.mlr.press/v70/guo17a.html
https://proceedings.mlr.press/v70/guo17a.html


E. Leduc and G. J. Assaf. Road visualization for smart city: Solution review with road

quality qualification. Internet of Things, 12:100305, 2020. ISSN 2542-6605. doi: https:

//doi.org/10.1016/j.iot.2020.100305. URL https://www.sciencedirect.com/science/

article/pii/S2542660520301372.

M. W. Sayers, T. D. Gillespie, and W. D. O. Patterson. 1986.

P. Schouten, J. Verweijen, J. Murairi, and S. K. Batundi. Paths of authority, roads

of resistance: Ambiguous rural infrastructure and slippery stabilization in eastern dr

congo. Geoforum, 133:217–227, 2022. ISSN 0016-7185. doi: https://doi.org/10.1016/j.

geoforum.2021.09.017. URL https://www.sciencedirect.com/science/article/pii/

S0016718521002633.

E. Stefanakis. Web mercator and raster tile maps: two cornerstones of online map service

providers. GEOMATICA, 71:100–109, 06 2017. doi: 10.5623/cig2017-203.

M. Tan and Q. V. Le. Efficientnetv2: Smaller models and faster training. CoRR,

abs/2104.00298, 2021. URL https://arxiv.org/abs/2104.00298.

A. Thegeya, T. Mitterling, A. Martinez Jr, J. A. Bulan, R. L. Durante, and J. Mag-atas.

Application of machine learning algorithms on satellite imagery for road quality monitor-

ing: An alternative approach to road quality surveys. ADB Economics Working Papers

Series, Dec 2022. doi: 10.22617/wps220587-2.

World Bank Climate Change Portal: DRC. URL https://climateknowledgeportal.

worldbank.org/country/congo-dem-rep/climate-data-historical.

World Bank Climate Change Portal: Liberia. URL https://climateknowledgeportal.

worldbank.org/country/liberia/climate-data-historical.

World Bank Group - Press Release. World bank approves $750 mil-

lion to support critical governance reforms, transport infrastructure, and

digital connectivity in the democratic republic of congo, Jun 2022.

36

https://www.sciencedirect.com/science/article/pii/S2542660520301372
https://www.sciencedirect.com/science/article/pii/S2542660520301372
https://www.sciencedirect.com/science/article/pii/S0016718521002633
https://www.sciencedirect.com/science/article/pii/S0016718521002633
https://arxiv.org/abs/2104.00298
https://climateknowledgeportal.worldbank.org/country/congo-dem-rep/climate-data-historical
https://climateknowledgeportal.worldbank.org/country/congo-dem-rep/climate-data-historical
https://climateknowledgeportal.worldbank.org/country/liberia/climate-data-historical
https://climateknowledgeportal.worldbank.org/country/liberia/climate-data-historical


URL https://www.worldbank.org/en/news/press-release/2022/06/28/

world-bank-approves-750-million-to-support-critical-governance-reforms-transport-infrastructure-and-digital-connectivity.

37

https://www.worldbank.org/en/news/press-release/2022/06/28/world-bank-approves-750-million-to-support-critical-governance-reforms- transport-infrastructure-and-digital-connectivity
https://www.worldbank.org/en/news/press-release/2022/06/28/world-bank-approves-750-million-to-support-critical-governance-reforms- transport-infrastructure-and-digital-connectivity

	Portada
	Index
	Abstract
	Motivation
	Literature Review
	Measures of Road Quality
	Satellite Imagery
	Methodology and Results

	Data Sources and Preprocessing
	Data Sources
	Road Type Maps
	Liberia IRI Data
	Google Earth Tiles
	Shape Files

	Preprocessing

	Methodology
	Choice of CNN
	Choosing Appropriate Categories

	Classification Models
	Binary Classification
	Multi-Class Classification
	Quantifying Uncertainty

	Classifying Road Type 
	Conclusion
	Bibliography

